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We investigate the time evolution and steady states of the stochastic susceptible-infected-recovered-
susceptible(SIRS) epidemic model on one- and two-dimensional lattices. We compare the behavior of this
system, obtained from computer simulations, with those obtained from the mean-field approximation(MFA)
and pair approximation(PA). The former (latter) approximates higher-order moments in terms of first-
(second-) order ones. We find that the PA gives consistently better results than the MFA. In one dimension, the
improvement is even qualitative.
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I. INTRODUCTION

The mathematical modeling of the spread of epidemics is
a subject of continuing theoretical and practical interest
[1,2]. This is enhanced by the fact that the same or similar
models are used for describing other phenomena such as
plant and animal dispersal, and successional dynamics in
ecology[3,4].

The level of description provided by a model can be
purely macroscopic and deterministic or individual and sto-
chastic[5]. In the first case, one uses(partial-) differential
equations to describe the time evolution of different sub-
populations, e.g., susceptible, infectious, and recovered. In
the second case, one typically uses stochastic dynamics on a
lattice (or more general graphs) where the variables at each
node represent the state of an individual or a small spatial
region. The time evolution of these variables is stochastic,
e.g., an infected individual at sitei has a certain probability
per unit time(rate) l to infect a susceptible individual at a
neighboring sitej . These systems fall into the category of
what mathematicians call interacting particle systems[6,7]
and physicists call stochastic lattice gases[8]—systems of
great interest also in the study of equilibrium phase transi-
tions, phase segregation kinetics, etc., fields very different
from epidemiology and ecology.

The connection between these modes of description and
various intermediate ones has been investigated extensively
in recent years, e.g., see[5,9–13]. Mathematically, this in-
volves the use of the so-called hydrodynamical scaling limit.
This uses a rigorous separation of space and time scales to
derive deterministic macroscopic equations from the micro-
scopic dynamics of stochastic lattice systems. Other ap-
proaches are based on more heuristic methods such as the
mean-field approximation(MFA) and improvement thereof
[14–25].

The present work falls in the latter category. We apply a
pair approximation(PA) scheme to a microscopic stochastic
epidemic model in which individuals recovered from an in-
fection enjoy a period of immunity before again becoming

susceptible at a rateg: the SIRS model. The PA approxima-
tion was used by Levin and Durrett[16] for the simpler
susceptible-infected-susceptible(SIS) model where recov-
ered individuals immediately become susceptible again.
They compared the results of the PA and MFA with those of
the stochastic SIS model and found that the PA gave a quan-
titative improvement over the MFA. Here we consider the
general SIRS model. We obtain the behavior of the stochastic
model from extensive computer simulations. We then solve
the PA and MFA models analytically for the stationary state
and numerically for the time-dependent case. We find that
the PA gives considerably better agreement with the simula-
tions than the MFA both for the time evolution and for the
steady state. For the latter, the PA reproduces the qualitative
difference between the one- and higher-dimensional phase
diagram of this model found in Refs.[26–29]. This is remi-
niscent of the relation between the MFA and the Bethe-
Peierls approximation(which the PA closely resembles) for
equilibrium lattice systems[30].

II. THE STOCHASTIC SIRS MODEL

We first recall the stochastic lattice model of the SIRS
epidemic process[31]. A sitex of a d-dimensional lattice can
be occupied by an individual in a state ofS (healthy and
susceptible), I (infected), or R (recovered, i.e., healthy and
immune). The system evolves according to the following
transition rates:

S→ I at rate lnsxd,

I → R at rate d,

R→ S at rate g, s1d

wherensxd is the number of infected(nearest) neighbors of
x, l is the infection rate,d is the recovery rate, andg is the
rate at which immunization ceases. The limitg→` corre-
sponds to the case where a recovered site passes instanta-
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neously through the stateR; this is the SIS model, also
known as the contact process. We shall choose time units in
which d=1.

One can obtain some rigorous qualitative information
about this and related models via probabilistic approaches
such as those used in interacting particle systems[26–29]. Of
particular interest is the behavior of the stationary state on an
infinite lattice which is a good approximation for the quasi-
steady-state behavior of large systems, see Appendix E. This
information is encoded in the phase diagram of the stationary
state, which depends on the infection ratel, the recovery
rateg, and the topology of the lattice. For smalll, the only
stationary state is one in which all sites are in the susceptible
(disease-free) state while for largel there is(for the infinite
system) also a stationary state containing a nonzero fraction
of I andR individuals.

The critical infection ratelcsgd is defined as the smallest
value of l, for a given g, above which the infection can
persist forever. For the SIS or contact processsg=`d, the
critical infection value is known with high accuracy,lcs`d
.1.6489 ind=1 andlcs`d.0.4122 ind=2 [6,8]. Consid-
erably less is known about the phase diagram of the SIRS
model. Interestingly, there is a qualitative difference in the
behavior oflcsgd in one and in higher dimensions wheng
→0. It has been shown that limg→0lcsgd=lcs0d is finite
whendù2 while lcs0d=` whend=1 [26–29].

To go beyond qualitative results, we need to carry out a
simulation or make some approximations. This is the subject
of the rest of the paper.

III. THE PAIR APPROXIMATION

The time evolution of the single-site probabilities in the
stochastic SIRS epidemic process can be written in the fol-
lowing form:

dPtsSxd
dt

= − l o
yPNsxd

PtsSx,Iyd + gPtsRxd, s2ad

dPtsIxd
dt

= l o
yPNsxd

PtsSx,Iyd − PtsIxd, s2bd

dPtsRxd
dt

= PtsIxd − gPtsRxd. s2cd

HereNsxd is the neighborhood(nearest-neighbor sites) of a
sitex, Ptsaxd is the probability of having a statea at sitex at
time t, andPtsax,byd is the joint probability to have statea
at site x and stateb at site y, at time t. We always have
PtsSxd+PtsIxd+PtsRxd=1.

Equations(2a)–(2c) are, as is usual for moment equations,
not a closed system. One can extend them by including equa-
tions for the time evolution ofPtsSx,Iyd, which in turn in-
volve higher moments of the spatial correlations. This leads
to an infinite hierarchy. To solve such a hierarchy, one usu-
ally resorts to some approximation scheme which expresses
the higher-order moments in terms of the lower-order ones
and truncates the equations at some point; this is referred to

as the moment closure method[14–25]. Both the MFA and
PA are such schemes. In the MFA, Eqs.(2a)–(2c) are closed
by assuming thatPtsSx,Iyd=PtsSxdPtsIyd, i.e., it neglects cor-
relations between different sites. This leads to a pair of
coupled equations which have been studied in[31]. In the PA
scheme,Ptsaxd and Ptsax,byd are kept as unknowns while
the higher-order moments are expressed, via some appropri-
ate approximation, in terms of these quantities.

To carry out the PA, we complement Eq.(2) by equations
for the second momentsPtsax,byd for nearest-neighbor sites
x andy based on the transition rule that we have described in
Eq. (1). These are

dPtsSx,Iyd
dt

= gPtsRx,Iyd − sl + 1dPtsSx,Iyd

+ o
wPNxsyd

lPtsSx,Sy,Iwd − o
wPNysxd

lPtsIw,Sx,Iyd,

s3ad

dPtsSx,Ryd
dt

= PtsSx,Iyd + gPtsRx,Ryd

− gPtsSx,Ryd − o
wPNysxd

lPtsIw,Sx,Ryd, s3bd

dPtsRx,Iyd
dt

= − sg + 1dPtsRx,Iyd + PtsIx,Iyd

+ o
wPNxsyd

lPtsRx,Sy,Iwd, s3cd

whereNxsyd is the set of nearest-neighbor sites ofy exclud-
ing the sitex. Ptsax,by,xwd is the joint probability to have
statea at sitex, stateb at sitey, and statex at sitew at time
t. For a derivation of Eq.(3), see Appendix A.

To close the system(2) and(3) and derive a set of autono-
mous equations forPtsaxd and Ptsax,byd, we approximate
the triad joint probabilityPtsax,by,xwd for x and w nearest
neighbors ofy, by the product of two pair probabilities
Ptsax,byd and Ptsby,xwd divided by the probabilityPtsbyd
[14–18], i.e., we set

Ptsax,by,xwd =
Ptsax,bydPtsby,xwd

Ptsbyd
. s4d

Note that we have made use here of the structure of the
hypercubic lattice. In such lattices, three adjacent sites—
x,y,w—cannot form a triangle but form only linear chains.
This is not so in other lattices, e.g., the triangular lattice,
where other configurations need also be considered.

While there are other choices for a PA, the approximation
in Eq. (4) allows one to get the steady-state solutions ana-
lytically. With other pair approximations[25], one has to
solve the resulting differential equations numerically, making
it impossible to obtain analytic expressions for the critical
curve.

To actually carry out computations with the PA, we will
assume from now on that our system is spatially uniform.
The sitex, in Eqs.(2) and (3), can now be chosen to be the
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origin. We also definePtsS,Id=s1/zdoyPNsxd PtsSx,Iyd and
Ptsa ,b ,xd=f1/sz−1dgowPNxsyd Ptsax,by,xwd, where z=2d
is the number of nearest neighbors of a site in the
d-dimensional cubic lattice. The truncated equations for the
PA-SIRS can now be written, by using the exact Eqs.(2) and
(3) and the approximate Eq.(4), as a closed set of five
coupled equations,

dPtsId
dt

= zlPtsS,Id − PtsId, s5ad

dPtsRd
dt

= PtsId − gPtsRd, s5bd

dPtsS,Rd
dt

= PtsS,Id + gfPtsRd − PtsR,Id − 2PtsS,Rdg

−
sz− 1dlPtsS,IdPtsS,Rd

1 − PtsRd − PtsId
, s5cd

dPtsR,Id
dt

= − s2 + gdPtsR,Id + PtsId − PtsS,Id

+
sz− 1dlPtsS,IdPtsS,Rd

1 − PtsRd − PtsId
, s5dd

dPtsS,Id
dt

= gPtsR,Id − sl + 1dPtsS,Id

+
sz− 1dlPtsS,Id

1 − PtsId − PtsRd

3f1 − PtsRd − PtsId − PtsS,Rd − 2PtsS,Idg.

s5ed

Note that we always havePtsad=Ptsa ,Sd+Ptsa ,Id
+Ptsa ,Rd, which determinesPtsI ,Id andPtsS,Sd.

In the limit g→`, PtsRd andPtsR,ad as well as their time
derivatives will go to zero. This yieldsgPtsRd=PtsId and
gPtsR,Id=PtsId−PtsS,Id [31]. In this limit, Eq. (5) reduces
to the PA equations of the SIS considered in[16],

dPtsId
dt

= zlPtsS,Id − PtsId, s6ad

dPtsS,Id
dt

= PtsId − sl + 2dPtsS,Id

+
sz− 1dlPtsS,Id

1 − PtsId
f1 − PtsId − 2PtsS,Idg.

s6bd

As already noted, the MFA approximates the joint prob-
ability PtsS,Id in Eq. (5a) by the product PtsS,Id
=PtsSdPtsId. This leads to the closed set of the MFA of equa-
tions for the SIRS[31],

dPtsSd
dt

= − zlPtsSdPtsId + gPtsRd, s7ad

dPtsId
dt

= zlPtsSdPtsId − PtsId, s7bd

dPtsRd
dt

= PtsId − gPtsRd. s7cd

For g→`, gPtsRd→PtsId andPtsSd→1−PtsId. Equation(7)
then reduces to the MFA for the SIS.

IV. STATIONARY SOLUTIONS OF THE PA-SIRS MODEL

Let us first consider the steady-state solutions of the PA-
SIS obtained by setting the left-hand side of Eq.(6) equal to
zero [16]. This gives for the critical value of the PA-SIS
epidemic processlcs`d=1/sz−1d. For lølcs`d, both PtsId
and PtsS,Id →0 as t→` for all initial states. When
l.lcs`d, there is, in addition to the disease-free state cor-
responding toPsId=0, also a stationary state consisting of a
finite fraction of infected individuals,

P̄sS,Id = P̄sId/szld, s8ad

P̄sId =
zfsz− 1dl − 1g
zsz− 1dl − 1

. s8bd

It is these nonzero steady states which are approached as
t→` when starting from any initial state withP0sId.0.

The steady-state solutions of the PA-SIRS system are ob-
tained by setting the left-hand side of Eq.(5) equal to zero.

Settingx= P̄sId, this yields

P̄sRd = x/g, s9ad

P̄sS,Id = x/szld, s9bd

P̄sS,Rd =

xS 1

zl
+

1

g + 1
D

gS1 +
1

g + 1
+

sz− 1dx
zfg − s1 + gdxgD

, s9cd

P̄sR,Id =
x − gP̄sS,Rd

g + 1

=
x

g + 111 −

1

zl
+

1

g + 1

1 +
1

g + 1
+

sz− 1dx
zfg − sg + 1dxg

2 ,

s9dd

where P̄sa ,bd are the approximate probabilities for having
statesa andb on neighboring sites. After further simplifica-
tions, we find thatx has to satisfy the cubic equation

xsa1x
2 + a2x + a3d = 0. s10d

Both the derivation of Eq.(10) and the explicit expressions
for a1, a2, anda3 as functions ofl and g are given in Ap-
pendix B.
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The rootx=0 corresponds to the all healthy steady state,
which is always a solution. The critical curvelcsgd is deter-
mined by the existence of a root of Eq.(10) such thatx and
all other stationary probabilities are strictly positive. It turns
out that this strictly positive root is unique. Thus whenl
ølcsgd, x=0 is the only steady-state solution. Forl.lcsgd,
there is also a steady state in which the infection is endemic:

P̄sId=gP̄sRd=x and P̄sSd=1−s1+1/gdx, see Appendix B.
The critical curvelcsgd is obtained in Appendix B. It is

given by the equation

lcsgd =
g + 1

2d − 2 + s2d − 1dg
, d = 1,2,3, . . . . s11d

As g→`, lcs`d=s2d−1d−1, the critical point of the PA-SIS
epidemic process. On the other hand, asg approaches zero,
the critical curve shows different behavior depending on the
dimension of the lattice:lcs0d diverges to infinity ford=1,
while lcs0d is finite for dù2. The PA thus reproduces the
qualitative difference between the one- and higher-
dimensional phase diagram of the SIRS model found in Refs.
[26–29].

The MFA, Eq. (7), yields the mean-field critical value,
lc

MF=1/z independent ofg. In the coexistence region

l.lc
MF, the mean-field stationary states areP̄sId=gP̄sRd

=fgslz−1dg / flzsg+1dg and P̄sSd=1/zl.
Both the steady state and critical value of the MFA and

PA fail to correctly represent the results of the stochastic
SIRS process for smallg; see Figs. 1 and 2. Note in particu-

lar that P̄sSd of the stochastic SIRS process is considerably
larger than that of the MFA or PA for largel and smallg.

This is due to the fact that the susceptible sites can be sur-
rounded by recovered ones and thus protected from contact-
ing infected ones in the stochastic case.

V. COMPARISON OF THE STOCHASTIC, PA,
AND MFA STEADY STATES

We compare in Figs. 3–6 the steady-state values ofP̄sad
and P̄sa ,bd obtained from the MFA and PA with the results

FIG. 1. Phase diagram of the SIRS process in two dimensions.
The coexistence phase ofS-I-R and the no-coexistence phase are
separated by the critical curve from the simulation(open circles
with dotted line to guide the eye), the PA(thick solid line), and the
MFA (long dashed line). The critical curve is obtained on a periodic
square lattice of different sizesN from simulations extrapolated to
an infinite system:N=502,702,1002,1502,2002.

FIG. 2. Phase diagram of the SIRS process in one dimension.
The critical curve from numerical simulations of a ring lattice of
different sizes N is extrapolated to an infinite system:N
=5000,7000,10 000,15 000. The same symbols are used as in
Fig. 1.

FIG. 3. First- and second-order moments of the steady-state
SIRS in two dimensions atg=0.2. The steady-state values of the
density of infection in(a) and the second moments in(b)–(f) are
drawn from the numerical simulation(open circle with dotted line
to guide the eye), the PA (thick solid line), and the MFA(long-
dashed line). For the numerical simulation, we used a system of size
N=1002.
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from the stochastic SIRS process as a function ofl at fixed
values ofg. Clearly the PA gives results closer to those ob-
tained from the stochastic model. For the methods used to
obtain the steady-state results from the numerical simulation,
see Appendix E.

Figures 3 and 5 show that both the MFA and PA overes-

timate P̄sId as well asP̄sa ,Id, a=S,R. This is due to the
strong tendency of infected sites in the stochastic model to
cluster into localized islands, reducing the contacts between
SandI. This is partially taken into account by the PA as seen

by the behavior ofP̄sS,Id and P̄sI ,Id in Figs. 3 and 5. This
clustering effect is also observed in the stochastic SIS pro-
cess[16]. It is more pronounced in one dimension.

Note that P̄sS,Id becomes zero both atl,lcsgd when

P̄sId=0, and atl=` when P̄sSd=0, reaching a peak at a
positive value ofl which depends ong. For large values of

g, the steady-state values ofP̄sad andP̄sa ,bd obtained from
the PA or the MFA agree well with the numerical simulation,
away from the criticallcsgd. Moreover, the PA yields steady-
state curves remarkably similar to those from the numerical
simulation; see Figs. 4–6.

VI. LINEAR STABILITY ANALYSIS OF THE PAIR
APPROXIMATION

To study the stability of the stationary PA state, Eq.(5) is
linearized about the steady-state values[31]; see Appendix
C. This leads to the study of the roots of the characteristic
fifth-order polynomial P5sjd, obtained from uA−jI u=0,
whereA is the Jacobian of the linearized PA-SIRS system. If
Re j,0, the solution of the linearized equation is stable, i.e.,
a small perturbation around the steady state will decay back
to the steady state. We used the Routh-Hurwitz conditions
[31] to obtain the sign of the real part of eigenvalues of the
Jacobian. As expected, the positive steady-state solution is
stable forl.lcsgd. The zero steady-state solution is stable
for lølcsgd and unstable forl.lcsgd.

The eigenvalues ofP5sjd have nonzero imaginary parts in
some regions of the parameter space. In such regions, the
PA-SIRS system in Eq.(5) will converge to the steady state
in a damped oscillatory manner. Such oscillations are seen in
Figs. 7 and 8.

VII. TIME-DEPENDENT BEHAVIOR

To study the time evolution of an epidemic following an
initial infection of a healthy population, we performed dy-
namical Monte Carlo simulations[33] as well as solutions of
Eqs.(5) and(7). For the stochastic evolution, we started with
infected sites placed either randomly or in a cluster and fol-
lowed the time evolution averaged over 103 realizations of
the SIRS process. To obtain the time evolution of the MFA
and PA, we solved Eqs.(7) and (5) numerically by using a

FIG. 4. First- and second-order moments of the steady-state
SIRS in two dimension atg=2. The same symbols are used as in
Fig. 3.

FIG. 5. First- and second-order moments of the steady-state
SIRS process in one dimension atg=1. The same symbols are used
as in Fig. 3.

FIG. 6. First- and second-order moments of the steady-state
SIRS process in one dimension atg=4. The same symbols are used
as in Fig. 3.
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fourth-order Runge-Kutta method. We plot the results in
Figs. 7 and 8.

To set the unit of time of the simulation, we started with a
fully infected state,P0sId=1 andl=0, and obtained the ex-
ponentially decaying pattern ofPtsId. We then set the slope
(death rate) of the graph, logPtsId versust, from the numeri-
cal simulation equal to those from the MFA and PA.

Starting with a small value ofP0sId, PtsId displays an
initial “exponential” growth in both the MFA and PA. Simi-
lar growth patterns are observed in allPtsa ,Id, a=S,I ,R.
This is explained by the initially abundantly available sus-
ceptible population. Once the susceptible population is re-
duced, the infected population reaches a maximum and then
decreases to the steady-state endemic level. Note the damped
oscillatory pattern in Figs. 7 and 8 for this choice of the
parameters(l ,g).

The numerical simulation of the stochastic time evolution
does not show the pronounced growth patterns of the PA and
MFA when the initial fraction of infected sites is small, as
seen in Fig. 8. The formation of clusters of infected sites
makes the infected population grow more slowly in the sto-
chastic model. When the initial fraction of infected popula-
tion increases to more than 1%, the stochastic model shows
significant change in its growth pattern, becoming similar to
the PA and MFA. If, however, the same fraction of infected
sites are initially placed in a single cluster, the stochastic
epidemic process exhibits slower growth patterns, similar to
those starting with a small fraction of initially infected sites.
These studies confirm that the clustering of infected sites in
the stochastic model reduces both the speed of growth and
the maximum fraction of infected sites. In realistic situations,
the population is not well mixed so we would expect growth
patterns more similar to that of the stochastic epidemic
model, starting with a fraction of infected sites initially
placed in a single cluster.

VIII. SUMMARY

We investigated the stochastic SIRS epidemic process and
compared the results with those obtained from the determin-
istic MFA and PA. These approximations close the hierarchy
of dynamical equations by expressing the higher-order mo-
ments in terms of the lower-order ones. The PA is found to
improve over the MFA both for the stationary and for the
time-dependent states. The time evolution of the system
shows damped oscillatory behavior in some parameter
ranges.

Note added in proof. Recently, we became aware of the
work by Kobayashi, Sato, and Konno[34] where the station-
ary state for the SIRS model in the square lattice was inves-
tigated by using Monte Carlo simulation and pair approxi-
mation. Our results agree with theirs. We thank N. Konno for
bringing this to our attention.
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APPENDIX A: DERIVATION OF DIFFERENTIAL
EQUATION FOR Pt„Sx ,I y…

Equation (3a) is derived by considering all transitions
leaving or entering the pair configurationsSx,Iyd. We list
them as follows. A pairsRx,Iyd changes to a pairsSx,Iyd with

FIG. 7. Time evolution of the first- and the second-order mo-
ments of the SIRS process in two dimensions. All subgraphs are
from numerical simulations(open circles), the PA(solid line), and
the MFA (dashed line) at g=0.2 andl=2. A periodic square lattice
of N=104 sites is used in the numerical simulations averaged over
103–104 realizations starting with random initial distribution with
1% of infected sites.

FIG. 8. Time evolution of a fraction of infected sites of the SIRS
process in two dimensions atg=0.2 andl=2. A periodic square
lattice of N=1002 is used in numerical simulation averaged over
103–104 realizations. Main: Simulation starts with 1% of infected
sites placed either randomly(filled circles) or in a single cluster
(open circles) on a lattice. Both the PA and MFA take an initial
value 0.01 forP0sId. Inset: Simulation starts with different fractions
of infected sites randomly placed in a lattice: 0.1%, 1%, and 5% of
the system.
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a rateg. A pair sSx,Iyd changes to a pairsIx,Iyd with a ratel
and also changes to a pairsSx,Ryd with a rate 1. A triad
configurationsSx,Sy,Iwd transits to a triadsSx,Iy,Iwd with a
rate l such that a pair configurationsSx,Syd is changed to
sSx,Iyd. A triad sIw,Sx,Iyd changes to a triadsIw,Ix,Iyd with a
ratel. The equations forPtsSx,Ryd and PtsRx,Iyd in Eq. (3)
can be obtained in a similar way. The relationPtsaxd
=Ptsax,ayd+Ptsax,byd+Ptsax,xyd can be used to obtain the
other joint probabilitiesPtsax,byd which are not shown in
Eq. (3).

APPENDIX B: DERIVATION OF EQ. (10)

The steady states in Eq.(9) are obtained by setting the lhs
of Eqs.(5a)–(5d) equal to zero. In addition, we set Eq.(5e)
equal to zero and replace a single site and joint probabilities
with the steady states in Eq.(9). After simplifications, we
obtain Eq.(10) with the coefficients,

a1 = g3hz2sz− 1dl − zj + g2hzs2z2 − 2z− 1dl − 2z− 1j

+ gh2zsz2 − z− 1dl − 2z− 1j + zhsz2 − z− 1dl − 1j,

a2 = zgfg2hz+ 1 − 2zsz− 1dlj + ghz+ 3 − s3z2 − 4z− 1dlj

+ z+ 1 − s2z2 − 3z− 1dlg,

a3 = z2g2fgh− 1 +lsz− 1dj − 1 +lsz− 2dg. sB1d

The critical curvelcsgd is given by settinga3=0. Only for
l.lcsgd does the quadratic factor of Eq.(10) have a posi-
tive root.

APPENDIX C: THE JACOBIAN OF THE LINEARIZED
PA-SIRS

The Jacobian of the linearized PA-SIRS is written

A =1
− g 1 0 0 0

0 − 1 zl 0 0

− K2K0 − K2K0 K3 −
K1

P̄sSRd
g

g − K2 − K2 1 −
K1

P̄sISd
− 2g −

K1

P̄sSRd
− g

K2 1 + K2 − 1 +
K1

P̄sISd

K1

P̄sSRd
− g − 2

2 ,

where

K0 = 1 + 2
P̄sISd

P̄sSRd
,

K1 =
sz− 1dlP̄sISdP̄sSRd

1 − P̄sRd − P̄sId
,

K2 =
sz− 1dlP̄sISdP̄sSRd

f1 − P̄sRd − P̄sIdg2
,

and

K3 = sz− 2dl − 1 −K1S 1

P̄sISd
+

4

P̄sSRd
D .

APPENDIX D: LINEAR STABILITY ANALYSIS
OF THE MF-SIRS

The Jacobian matrix B of the linearized MF-SIRS is given
by [31]

B = S− lzP̄sId − g − lzP̄sSd − g

lzP̄sId lzP̄sSd − 1
D .

The characteristic polynomial of the second order,P2sjd
=j2+a1j+a2=0, is obtained fromuB−jI u=0.

The necessary and sufficient(Routh-Hurwitz) conditions
[31] for Re j,0 are a2.0 and a1.0. In the coexistence
region wherezl.1, a2=gszl−1d.0 and a1=fg / sg+1dg
3sg+zld.0 for all g.0. In the no-coexistence region
wherezl,1, a2=gs1−zld.0 anda1=g+s1−zld.0 for all
g.0. Both in the coexistence and no-coexistence region, the
real part of the eigenvalues is negative and thus the mean-
field steady states are stable.

Now we turn our attention to the oscillatory behavior. The
eigenvalues of the characteristic polynomialP2sjd are given
by
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j± =
− g2 − zgl ± Îf2gz2l2 − 2zlsg2 + 2zgl + 2d + g3 + 4g2 + 8g + 4gg

2sg + 1d
. sD1d

In the range ofl−sgd,lsgd,l+sgd, the imaginary part of
the eigenvalues is nonzero,

l±sgd =
2 + 4g + g2 ± 2s1 + gd3/2

zg
.

In this range ofl, the steady states correspond to the stable
spiral and the system converges to the steady state in a
damped oscillatory pattern. Even in the damped oscillatory
region, any oscillation is hardly visible in the largeg limit
and becomes noticeable only in smallg limit.

APPENDIX E: MONTE CARLO SIMULATION

The numerical simulations described here used lattices
with periodic boundary conditions. In one dimension, rings
of 5000øNø15 000 sites were used. In two dimensions,
torii of 502øNø2002 sites were employed.

To obtain the steady state of the SIRS process, a random
initial configuration of susceptible and infected sites is
evolved according to the transition rates in Eq.(1). In prac-
tice, a site is randomly chosen and a random number
sPf0,1gd is also chosen: if it is greater than the given tran-
sition probability for that site, which is equal to the rate3Dt,
its state is updated:Dt is chosen to be so small that transition
probability is not greater than 1 for a range ofsl ,gd [8,32].
Otherwise its state remains the same.

For a finite system, the only true stationary state of the
SIRS process is the absorbing state corresponding toPsSd

=1, PsId=PsRd=0. To learn about the active state from
simulations of a finite system, we study the quasistationary
state. These are determined from averages over the surviving
representatives of 103–104 independent realizations of the
SIRS process with the same parametersl ,gd, beginning with
a random initial distribution of theI ’s. Surviving sample av-
erages converge to stationary values asN→`. To obtain the
steady states and critical curve, we extrapolated quasistation-
ary values of finite systems to those of the infinite system.

The finite-size scaling theory[8] can be used to obtain the
critical curvelc

zsgd. We can assume a scaling function of the
surviving probability:PtsId, t−b/niffsl−lcdt1/nig. At critical-
ity, l=lcsgd, the survival probability of the infection, start-
ing from a single infected site, has a power-law behavior in
time. In the subcritical region it decays exponentially, while
in the supercritical region it reaches nonzero steady state in a
short time. The power-law behavior of the survival probabil-
ity at criticality enables one to extract the critical curvelc

zsgd
from the time-evolution data of the SIRS process. This dy-
namical Monte Carlo simulation is reliable when the system
size is sufficiently large so that the evolution of the system is
approximately confined, for the duration of the simulation to
a region smaller than the size of the system[33]. However,
we found that this surviving probability oscillates wildly
wheng is small. Because of this, the dynamical Monte Carlo
method is not used to determine the critical curve nearg
=0.
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