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Pair approximation of the stochastic susceptible-infected-recovered-susceptible epidemic model
on the hypercubic lattice
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We investigate the time evolution and steady states of the stochastic susceptible-infected-recovered-
susceptiblgSIRS epidemic model on one- and two-dimensional lattices. We compare the behavior of this
system, obtained from computer simulations, with those obtained from the mean-field approxigittion
and pair approximatior(PA). The former (latter) approximates higher-order moments in terms of first-
(secondy order ones. We find that the PA gives consistently better results than the MFA. In one dimension, the
improvement is even qualitative.
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I. INTRODUCTION susceptible at a ratg: the SIRS model. The PA approxima-
tion was used by Levin and Durrefi6] for the simpler
The mathematical modeling of the spread of epidemics isusceptible-infected-susceptibi€lS) model where recov-
a subject of continuing theoretical and practical interestered individuals immediately become susceptible again.
[1,2]. This is enhanced by the fact that the same or similaThey compared the results of the PA and MFA with those of
models are used for describing other phenomena such ase stochastic SIS model and found that the PA gave a quan-
plant and animal dispersal, and successional dynamics ititative improvement over the MFA. Here we consider the
ecology|[3,4]. general SIRS model. We obtain the behavior of the stochastic
The level of description provided by a model can bemodel from extensive computer simulations. We then solve
purely macroscopic and deterministic or individual and sto-the PA and MFA models analytically for the stationary state
chastic[5]. In the first case, one usé¢partial) differential  and numerically for the time-dependent case. We find that
equations to describe the time evolution of different sub-the PA gives considerably better agreement with the simula-
populations, e.g., susceptible, infectious, and recovered. ltions than the MFA both for the time evolution and for the
the second case, one typically uses stochastic dynamics orsgeady state. For the latter, the PA reproduces the qualitative
lattice (or more general graphsvhere the variables at each difference between the one- and higher-dimensional phase
node represent the state of an individual or a small spatialiagram of this model found in Reff26—29. This is remi-
region. The time evolution of these variables is stochasticniscent of the relation between the MFA and the Bethe-
e.g., an infected individual at sitehas a certain probability Peierls approximatiotiwhich the PA closely resemblgor
per unit time(rate) A to infect a susceptible individual at a equilibrium lattice system§30].
neighboring sitej. These systems fall into the category of
what mathematicians call interacting particle systd@3]
and physicists call stochastic lattice gag8s—systems of IIl. THE STOCHASTIC SIRS MODEL
great interest also in the study of equilibrium phase transi- \ve first recall the stochastic lattice model of the SIRS
tions, phase segregation kinetics, etc., fields very dif'feren(g)pidemiC procest81]. A site x of ad-dimensional lattice can
from epidemiology and ecology. o be occupied by an individual in a state 8f(healthy and
The connection between these modes of description a”%hsceptiblﬁ | (infected, or R (recovered, i.e., healthy and
e

various intermediate ones has been investigated extensiv Mmune. The system evolves according to the following
in recent years, e.g., s¢6,9-13. Mathematically, this in- .o aition rates:

volves the use of the so-called hydrodynamical scaling limit.

This uses a rigorous separation of space and time scales to S—1 atrate An(x),
derive deterministic macroscopic equations from the micro-
scopic dynamics of stochastic lattice systems. Other ap- | =R atrate 4,

proaches are based on more heuristic methods such as the
mean-field approximatiodMFA) and improvement thereof
[14-235.

The present work falls in the latter category. We apply awheren(x) is the number of infecte¢hearest neighbors of
pair approximatior(PA) scheme to a microscopic stochastic x, \ is the infection rateg is the recovery rate, ang is the
epidemic model in which individuals recovered from an in-rate at which immunization ceases. The linyit> corre-
fection enjoy a period of immunity before again becomingsponds to the case where a recovered site passes instanta-

R— S atrate vy, (1
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neously through the statR; this is the SIS model, also
known as the contact process. We shall choose time units i
which 6=1.

One can obtain some rigorous qualitative information
about this and related models via probabilistic approache
such as those used in interacting particle syst@@s29. Of
particular interest is the behavior of the stationary state on a
infinite lattice which is a good approximation for the quasi-
steady-state behavior of large systems, see Appendix E. Th
information is encoded in the phase diagram of the stationar
state, which depends on the infection ratethe recovery
rate y, and the topology of the lattice. For small the only
stationary state is one in which all sites are in the susceptibl
(disease-frepstate while for largex there is(for the infinite

system also a stationary state containing a nonzero fraction

of I andR individuals.

The critical infection ratev.(y) is defined as the smallest
value of \, for a giveny, above which the infection can
persist forever. For the SIS or contact procégs«), the
critical infection value is known with high accuracy,(«)
=1.6489 ind=1 and\(«)=0.4122 ind=2 [6,8]. Consid-

erably less is known about the phase diagram of the SIRS

model. Interestingly, there is a qualitative difference in the
behavior ofA.(y) in one and in higher dimensions when
—0. It has been shown that limoA (y)=\c(0) is finite
whend=2 while \,(0)=c whend=1 [26-29.

To go beyond qualitative results, we need to carry out a
simulation or make some approximations. This is the subject

of the rest of the paper.

IIl. THE PAIR APPROXIMATION

The time evolution of the single-site probabilities in the
stochastic SIRS epidemic process can be written in the fol
lowing form:

dP(Sy) = S Pi(Saly) + ¥PuRY, (2a)
dt yeN(x)

9Pl _\ S (sl - Py, (2b)
dt yeN(x)

dP:j(tRX) =Pl = YP(RY. (20)

Here MV(x) is the neighborhoodnearest-neighbor sitesf a
sitex, P(a,) is the probability of having a state at sitex at
time t, andPy(ay, B,) is the joint probability to have state
at sitex and stateB at sitey, at timet. We always have
P(S)+Pi(1)+P(R)=1.

Equationg2a)—(2¢) are, as is usual for moment equations,
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as the moment closure meth@t4—-25. Both the MFA and

BA are such schemes. In the MFA, E¢®a—(2¢) are closed

by assuming thal(S,,1,)=P(S)Py(l,), i.e., it neglects cor-
relations between different sites. This leads to a pair of
soupled equations which have been studiefBij. In the PA
scheme,Py(a,) and Py(ay,B,) are kept as unknowns while
the higher-order moments are expressed, via some appropri-
ate approximation, in terms of these quantities.

is To carry out the PA, we complement EQ) by equations

for the second momen®(ay, B,) for nearest-neighbor sites

x andy based on the transition rule that we have described in

Eqg. (1). These are
e

dP(S,,1
Ldst(ﬁ = ’yPt(RX! Iy) - ()\ + 1) PI(S(’ Iy)
+ > AP(S.S, W - 2 AP(,Sly),
weNX(y) weM(x)
(33
PR ps,1) + PIRR)
- YP(SeR) - X AP(14SuR), (3b)
weAY(x)
dPy(R,I
Ldtl) == (7+ 1)Pt(Rxa|y) + Pt(lxaly)

+ 2 AP(R.S,lw), (30)

weNX(y)
where NX(y) is the set of nearest-neighbor sitesyoéxclud-

ing the sitex. Py(ay, By, xy) is the joint probability to have
statea at sitex, stateg at sitey, and statey at sitew at time
t. For a derivation of Eq(3), see Appendix A.

To close the systerf?) and(3) and derive a set of autono-
mous equations foPy(a,) and Py(ay,B,), we approximate
the triad joint probabilityP (e, By, xw) for x andw nearest
neighbors ofy, by the product of two pair probabilities
Pi(ay,B,) and P(By,x,,) divided by the probabilityP(3,)
[14-19, i.e., we set

Pi(ay, By) Pt(Byi Xw)
Pt(lgy)

Note that we have made use here of the structure of the
hypercubic lattice. In such lattices, three adjacent sites—
X,Y,w—cannot form a triangle but form only linear chains.
This is not so in other lattices, e.g., the triangular lattice,
where other configurations need also be considered.

While there are other choices for a PA, the approximation
in Eqg. (4) allows one to get the steady-state solutions ana-

Pi(a, By’ Xw) = (4)

not a closed system. One can extend them by including equaytically. With other pair approximation§25], one has to

tions for the time evolution oP(S,,ly), which in turn in-

solve the resulting differential equations numerically, making

volve higher moments of the spatial correlations. This lead$t impossible to obtain analytic expressions for the critical

to an infinite hierarchy. To solve such a hierarchy, one usu

eurve.

ally resorts to some approximation scheme which expresses To actually carry out computations with the PA, we will
the higher-order moments in terms of the lower-order onesissume from now on that our system is spatially uniform.
and truncates the equations at some point; this is referred thhe sitex, in Egs.(2) and(3), can now be chosen to be the

036114-2



PAIR APPROXIMATION OF THE STOCHASTIC.

origin. We also defineP(S,1)=(1/2)Zyc yin Pi(Si1y) and

Pt(a!B!X) :[1/(2_ 1)]EWE./\/X(y) Pt(aX!:By!Xw)l where z=2d
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is the number of nearest neighbors of a site in the

d-dimensional cubic lattice. The truncated equations for the
PA-SIRS can now be written, by using the exact E@sand
(3) and the approximate Eq4), as a closed set of five

coupled equations,

P e -P ), (59
d
PR ) - PR, (5b)
BAER _p(s1)+4fP(R - P(R.1) - 2P(SR)]
(z- DAP(SDP(SR)
1-P(R-P() (50
dP(R,
% == 2+ PRI+ Pl) - P(SI)
(z-DAP(SP(SR)
YTIoRR-PO) ()
BBED e ) - v+ DP(S)
(z- DAP(S)
1-P()-P(R)
X[1-P(R) = P(l) = P(SR) — 2P(S1)].
(5¢)

Note that we always havePa)=P(a,9+P{(a,l)
+Py(a,R), which determine$(1,1) and P,(S,9).

In the limit y— o, P(R) andPy(R, «) as well as their time
derivatives will go to zero. This yieldgP,(R)=P,(1) and
yP(R,1)=Py(1)=Py(S,1) [31]. In this limit, Eq. (5) reduces

to the PA equations of the SIS considered 18],

dPy(h)
dt

dP(S1)

a Pl) = (N +2)P(S)

. Z=IP(S)

p) LRI -2P(SD]

(6b)

=2\P(S]1) = P(1), (6a)

P - apisP - P, 7
BB Py - (R, 79

For y— o, yP(R)— P(1) andP(S) — 1 -P(l). Equation(7)
then reduces to the MFA for the SIS.

IV. STATIONARY SOLUTIONS OF THE PA-SIRS MODEL

Let us first consider the steady-state solutions of the PA-
SIS obtained by setting the left-hand side of E).equal to
zero [16]. This gives for the critical value of the PA-SIS
epidemic procesa ()=1/(z—1). For A<\(e), both P,(I)
and Py(S,I) —0 as t—o for all initial states. When
N> \(e0), there is, in addition to the disease-free state cor-
responding td?(1)=0, also a stationary state consisting of a
finite fraction of infected individuals,

P(S1)=P()I(2\), (83
—  Az-1)r-1]
P = 2z-Dr-1" (8b)

It is these nonzero steady states which are approached as
t— o0 when starting from any initial state witRy(l) > 0.

The steady-state solutions of the PA-SIRS system are ob-
tained by setting the left-hand side of E&) equal to zero.

Settingx=P(l), this yields

P(R) =Xy, (9a)
P(S1)=X/(2\), (9b)
1 1
— X<5+'y+1>
P(SR) = < 1 2= Dx ) (90
yl 1+ +
y+1 Zy-(1+yx]
E(RJ):L(S’R)
+1
1 1
—+
X _ A y+1
T+l ! z-Dx |’
y+1 Zy-(y+1Dx]
(9d)

whereE(a,,B) are the approximate probabilities for having

ability Py(S,1)

tions for the SIRS31],

dR(S) _
dt

in Eg. (58 by the product P(S,I)
=P(S)Py(l). This leads to the closed set of the MFA of equa-

=-2\P(9P(1) + yP(R), (79

tions, we find thak has to satisfy the cubic equation
x(ayx? + ax + ag) = 0. (10)

Both the derivation of Eq(10) and the explicit expressions
for a;, a,, andaz as functions of\ and vy are given in Ap-
pendix B.
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FIG. 1. Phase diagram of the SIRS process in two dimensions. FIG. 2. Phase diagram of the SIRS process in one dimension.
The coexistence phase &fl-R and the no-coexistence phase are The critical curve from numerical simulations of a ring lattice of
separated by the critical curve from the simulati@pen circles  different sizes N is extrapolated to an infinite system\
with dotted line to guide the eyethe PA(thick solid ling), and the ~ =5000,7000,10 000,15 000. The same symbols are used as in
MFA (long dashed ling The critical curve is obtained on a periodic Fig. 1.
square lattice of different sizeéd from simulations extrapolated to
an infinite systemN=50?,70%, 10, 15¢%, 20C". This is due to the fact that the susceptible sites can be sur-

rounded by recovered ones and thus protected from contact-

The rootx=0 corresponds to the all healthy steady statejng infected ones in the stochastic case.
which is always a solution. The critical curwg(y) is deter-

mined by the existence of a root of HJ.0) such thatx and V. COMPARISON OF THE STOCHASTIC, PA,

all other stationary probabilities are strictly positive. It turns AND MFA STEADY STATES

out that this strictly positive root is unique. Thus whgn o _
<\(7), x=0 is the only steady-state solution. For \(y), We compare in Figs. 3-6 the steady-state valueB(ef

there is also a steady state in which the infection is endemiand P(«, 8) obtained from the MFA and PA with the results
P()=yP(R)=x and P(S)=1-(1+1/y)x, see Appendix B.

The critical curve) (y) is obtained in Appendix B. It is 02 ; 02
given by the equation T T = @PRID |
Hoo0RB00 e
0.1/ /L5 1 - e O
y+ 1 “/ §"’ (a) P(I) / OC)LJ@V
Ae() = . d=1,2,3,.... (11 I
2d-2+(2d-1)y 0_0(5) . 8.3
N\ P(S,R
As y—», N\()=(2d-1)7%, the critical point of the PA-SIS 0025 ,’ N ®) PS,D 1 o, (?)@( ) L ots
epidemic process. On the other hand,yaapproaches zero, AL & ~0oo |
the critical curve shows different behavior depending on the G e o T ]
dimension of the latticeh,(0) diverges to infinity ford=1, 002 ‘ = : (1)
while \.(0) is finite for d=2. The PA thus reproduces the ' 8
qualitative difference between the one- and higher- %
dimensional phase diagram of the SIRS model found in Refs. %925 | O ®OPss) 1%
[26-29. . ! " POCO6ooso
The MFA, Eq.(7), yields the mean-field critical value, 0 = 0

\'F=1/z independent ofy. In the coexistence region 2 4 6

)\>)\E"F, the mean-field stationary states d¢l)=yP(R)
=[y(\z—D)]/[N2(y+1)] andE(S):1/z)\. FIG. 3. First- and second-order moments of the steady-state

. SIRS in two dimensions ay=0.2. The steady-state values of the
Both the steady state and critical value of the MFA anddensity of infection in(a) and the second moments (h)—f) are

PA fail to correctly represent the results of the stochastic

) . . . drawn from the numerical simulatiafpen circle with dotted line
SIRS process for smaj, see Figs. 1 and 2. Note in particu- to guide the eyg the PA(thick solid ling, and the MFA(long-

lar that P(S) of the stochastic SIRS process is considerablydashed ling For the numerical simulation, we used a system of size
larger than that of the MFA or PA for large and smally. N=10C.
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FIG. 4. First- and second-order moments of the steady-state FIG. 6. First- and second-order moments of the steady-state
SIRS in two dimension ay=2. The same symbols are used as in SIRS process in one dimensionjyat 4. The same symbols are used
Fig. 3. as in Fig. 3.

frolm the stoc?astlic ?IRS process as Ia fulnctiom att hﬁxed ] y, the steady-state values a) andE( «, B) obtained from
values ofy. Clearly the PA gives results closer to those o “the PA or the MFA agree well with the numerical simulation,

tained from the stochastic model. For the methods used t8way from the criticak (7). Moreover, the PA yields steady-

obtain the steady-state results from the numerical simulationstate curves remarkably similar to those from the numerical

see Appendix E. . S ; >
Figures 3 and 5 show that both the MFA and PA overes-SImUIatlon’ see Figs. 4-6.

timate P(I) as well asP(«a,l), =S,R. This is due to the

strong tendency of infected sites in the stochastic model to  VI. LINEAR STABILITY ANALYSIS OF THE PAIR
cluster into localized islands, reducing the contacts between APPROXIMATION

Sandl. This is partially taken into account by the PA as seen To study the stability of the stationary PA state, E3).is

by the behavior oP(S,1) andP(l,1) in Figs. 3 and 5. This |inearized about the steady-state val(ids]; see Appendix

clustering effect is also observed in the stochastic SIS proe. This leads to the study of the roots of the characteristic

cess[16]. It is more pronounced in one dimension. fifth-order polynomial Ps(¢), obtained from |[A-£l|=0,
Note thatP(S,1) becomes zero both at<A.(y) when whereA is the Jacobian of the linearized PA-SIRS system. If

E(I):O and at\=o when P(S)=0, reaching a peak at a Re ¢<0, the solution of the linearized equation is stable, i.e.,

positive value of\ which depends ory. For large values of a small perturbation around the steady state will decay back
to the steady state. We used the Routh-Hurwitz conditions

0.5 ——— : : 04 [31] to obtain the sign of the real part of eigenvalues of the
////- @ PR Jacobian. As expected, the positive steady-state solution is
025 |/ 2 stable forA >\ (y). The zero steady-state solution is stable
! for A=<\(y) and unstable foik >A.(y).
0 The eigenvalues dP5(¢) have nonzero imaginary parts in
02 some regions of the parameter space. In such regions, the
PA-SIRS system in Eq5) will converge to the steady state
01 I\ ®PSD in a damped oscillatory manner. Such oscillations are seen in

Figs. 7 and 8.

VII. TIME-DEPENDENT BEHAVIOR

To study the time evolution of an epidemic following an
initial infection of a healthy population, we performed dy-
namical Monte Carlo simulatiori83] as well as solutions of
Egs.(5) and(7). For the stochastic evolution, we started with
infected sites placed either randomly or in a cluster and fol-

FIG. 5. First- and second-order moments of the steady-statbowed the time evolution averaged over®l@alizations of
SIRS process in one dimensionyat 1. The same symbols are used the SIRS process. To obtain the time evolution of the MFA
as in Fig. 3. and PA, we solved Eqg7) and (5) numerically by using a
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0.8 - - - ' ' ' 04 Starting with a small value oPqy(l), P(I) displays an
) @ PRI initial “exponential” growth in both the MFA and PA. Simi-
o 102 lar growth patterns are observed in &f(«,1), @=S,I,R.
- i This is explained by the initially abundantly available sus-
by s 10 15 200 ceptible population. Once the susceptible population is re-
' ' ' 0.4 duced, the infected population reaches a maximum and then
() P(SR) decreases to the steady-state endemic level. Note the damped
02 oscillatory pattern in Figs. 7 and 8 for this choice of the
[0 parameterga, y).
0 5 0 15 20 The numerical simulation of the stochastic time evolution
' 1 does not show the pronounced growth patterns of the PA and
i OPSS) MFA v_vhen the initial fractio_n of infected sites_ is small, as
B . 102 seen in Fig. 8. The formation of clusters of infected sites
| makes the infected population grow more slowly in the sto-
0‘ PP chastic model. When the initial fraction of infected popula-

tion increases to more than 1%, the stochastic model shows
significant change in its growth pattern, becoming similar to
FIG. 7. Time evolution of the first- and the second-order mo-the PA and MFA. If, however, the same fraction of infected
ments of the SIRS process in two dimensions. All subgraphs argjtes are initially placed in a single cluster, the stochastic
from numerical simulationgopen circleg, the PA(solid line), and  epidemic process exhibits slower growth patterns, similar to
the MFA (dashed lingat y=0.2 and\=2. A periodic square lattice  those starting with a small fraction of initially infected sites.
of N=10* sites is used in the numerical simulations averaged ovefrhage studies confirm that the clustering of infected sites in
10°~10* realizations starting with random initial distribution with the stochastic model reduces both the speed of growth and
1% of infected sites. the maximum fraction of infected sites. In realistic situations,
the population is not well mixed so we would expect growth
fourth-order Runge-Kutta method. We plot the results inpatterns more similar to that of the stochastic epidemic
Figs. 7 and 8. model, starting with a fraction of infected sites initially
To set the unit of time of the simulation, we started with aplaced in a single cluster.
fully infected statePy(I)=1 and\=0, and obtained the ex-
ponentially decaying pattern ¢¥,(1). We then set the slope

ary state for the SIRS model in the square lattice was inves-
tigated by using Monte Carlo simulation and pair approxi-

mation. Our results agree with theirs. We thank N. Konno for

bringing this to our attention.

! VIIl. SUMMARY
(death ratgof the graph, logP;(l) versust, from the numeri-
cal simulation equal to those from the MFA and PA. We investigated the stochastic SIRS epidemic process and
compared the results with those obtained from the determin-
08 istic MFA and PA. These approximations close the hierarchy
. Random 1% 0 . of dyna}mlcal equations by expressing the h|gher-order mo-
- Clustered 1% 4 |5 01% ments in terms of the lower-order ones. _The PA is found to
— PA L% s 1% improve over the MFA both for the stationary and for the
06 -} —- MFA 1% 03 £ 5 059 17 time-dependent states. The time evolution of the system
N PD f shows damped oscillatory behavior in some parameter
¥ 02 58 % ranges.
P g4 o1 F X Note added in proofRecently, we became aware of the
f i/f" work by Kobayashi, Sato, and Koniid4] where the station-
| 0y
|
|
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FIG. 8. Time evolution of a fraction of infected sites of the SIRS
process in two dimensions at=0.2 and\=2. A periodic square
lattice of N=10@ is used in numerical simulation averaged over
103-10* realizations. Main: Simulation starts with 1% of infected APPENDIX A: DERIVATION OF DIFFERENTIAL
sites placed either randomtilled circles or in a single cluster EQUATION FOR Py(S,,1y)

(open circley on a lattice. Both the PA and MFA take an initial

value 0.01 forPy(1). Inset: Simulation starts with different fractions ~ Equation (33 is derived by considering all transitions
of infected sites randomly placed in a lattice: 0.1%, 1%, and 5% of€aving or entering the pair configuratiq,,l,). We list
the system. them as follows. A paitR,,l,) changes to a paiS,,l,) with
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a ratey. A pair (S,,ly) changes to a paif, |,) with a ratex
and also changes to a pdi§,R,) with a rate 1. A triad
configuration(S, S, 1) transits to a triadS,,ly,1,) with a
rate \ such that a pair configuratio(§,,S)) is changed to
(S ly). Atriad (1, S;,1y) changes to a triad,,, I, 1y) with a
rate \. The equations foP(S,R)) andP(R,,l) in Eq. (3)
can be obtained in a similar way. The relatid®(«,)

=Py(ay, ay) +Pi(ay, By) +Piay, xy) can be used to obtain the

other joint probabilitiesP;(ay,B,) which are not shown in
Eq. (3).

APPENDIX B: DERIVATION OF EQ. (10)

PHYSICAL REVIEW E 70, 036114(2004)

a; = Y{Z(z- D\ -2} + YH{z(222 - 2z- )\ - 2z- 1}
+ W2z -z- D\ -2z- L+ Z(-z- D)\ - 1},

a,=2y[Yz+1-22z- DA} + ¥{z+ 3 - (3822 - 4z—- D\}
+z+1-(222-3z- 1],

a3=Z2Y H-1+Nz-1}-1+N(z-2)]. (Bl

The critical curven () is given by settingiz=0. Only for
N> \(y) does the quadratic factor of E(LO) have a posi-
tive root.

The steady states in E¢P) are obtained by setting the Ihs

of Egs.(5a—(5d) equal to zero. In addition, we set E¢pe)

equal to zero and replace a single site and joint probabilities

with the steady states in E@9). After simplifications, we
obtain Eq.(10) with the coefficients,

K, 1+K, -1+

where

P(S
Ko=1+ 209

P(SR

-z 1)AP(IS)P(SR
1-P(R-P(I)

e 1)AP(IS)P(SR
[1-P(R) - P(]?

and

4
P(SR

+

Ks=(z-2A -1 —K1<
P(IS)

)

P(IS)

APPENDIX C: THE JACOBIAN OF THE LINEARIZED
PA-SIRS

The Jacobian of the linearized PA-SIRS is written

Ky Ky

P(SR

APPENDIX D: LINEAR STABILITY ANALYSIS
OF THE MF-SIRS

The Jacobian matrix B of the linearized MF-SIRS is given
-\zP() -y -AzP(9 -y

by [31]
( AzP()  AzP(9 -1 )

The characteristic polynomial of the second orde(é)
=&+a,é+a,=0, is obtained fromB- &|=0.

The necessary and sufficiefRouth-Hurwit? conditions
[31] for Re (<0 area,>0 anda;>0. In the coexistence
region wherezA>1, a,=y(zA—-1)>0 and a;=[y/(y+1)]
X(y+z\)>0 for all y>0. In the no-coexistence region
wherez\ <1, a,=y(1-2\) >0 anda,;= y+(1-2z\) >0 for all
v>0. Both in the coexistence and no-coexistence region, the
real part of the eigenvalues is negative and thus the mean-
field steady states are stable.

Now we turn our attention to the oscillatory behavior. The
eigenvalues of the characteristic polynonal &) are given

by
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== 2Nt \[2yN2 = 22\ (Y2 + 2ZyN + 2) + P+ 42 + By + 4]y

b 2(y+1)

(D1)

In the range ofA_(y) <\(y)<\.(y), the imaginary part of =1, P(I)=P(R)=0. To learn about the active state from
the eigenvalues is nonzero, simulations of a finite system, we study the quasistationary

32 state. These are determined from averages over the surviving
2+4y+ Y £2(1+y . representatives of 2610* independent realizations of the
Zy SIRS process with the same paraméiery), beginning with

In this range of\, the steady states correspond to the stabl@ random initial distribution of thé's. Surviving sample av-
spiral and the system converges to the steady state in &@ges converge to stationary values\Nas «. To obtain the
damped oscillatory pattern. Even in the damped oscillatorygteady states and critical curve, we extrapolated quasistation-
region, any oscillation is hardly visible in the largelimit ary values of finite systems to those of the infinite system.
and becomes noticeable only in smallimit. The finite-size scaling theoiy3] can be used to obtain the
critical curveN(y). We can assume a scaling function of the
surviving probability: P,(1) ~ t™#"f[ (A =\ JtY"1]. At critical-

The numerical simulations described here used latticeiy, A=\.(y), the survival probability of the infection, start-
with periodic boundary conditions. In one dimension, ringsing from a single infected site, has a power-law behavior in
of 5000<N=15 000 sites were used. In two dimensions,time. In the subcritical region it decays exponentially, while
torii of 50°<N=20C sites were employed. in the supercritical region it reaches nonzero steady state in a

To obtain the steady state of the SIRS process, a randoshort time. The power-law behavior of the survival probabil-
initial configuration of susceptible and infected sites isity at criticality enables one to extract the critical cuNgy)
evolved according to the transition rates in EB. In prac-  from the time-evolution data of the SIRS process. This dy-
tice, a site is randomly chosen and a random numbenamical Monte Carlo simulation is reliable when the system
(e[0,1)) is also chosen: if it is greater than the given tran-size is sufficiently large so that the evolution of the system is
sition probability for that site, which is equal to the ratét,  approximately confined, for the duration of the simulation to
its state is updatedit is chosen to be so small that transition a region smaller than the size of the systg88]. However,
probability is not greater than 1 for a range(af,y) [8,32. we found that this surviving probability oscillates wildly
Otherwise its state remains the same. wheny is small. Because of this, the dynamical Monte Carlo

For a finite system, the only true stationary state of themethod is not used to determine the critical curve near
SIRS process is the absorbing state corresponding(8  =0.

Ai(y) =
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